

Comprehensive Literature review:

Enhancing Food Supply Chain Management

through Big Data technologies and strategies

Anima Pokharel
Student ID

MBAR 661: Academic Research Project (ONS-SPRING24-02) (Under the Supervision of Dr. Amit Kohli)

COVID EMERGENCY

O Public group · 849 members

+ Invite

Discussion

Your Items

Events

Media

Files

Guides

People

Q

•••

About

Platform to support each other in this COVID pandemic. Lets join this mission together and help each other. This is the time to show humanity. <3

~~Supported by Sustainable Development Initiative network Nepal (SUDIN-Nepal) See less

Public

Anyone can see who's in the group and what they post.

Visible

Anyone can find this group.

Learn more

Table of Contents

Introduction

Systematic Literature Review

Research Methodology

Bibliographic Analysis

Use of Technologies

Application in Food Supply chain process

Conclusion

Introduction

A Food Supply Chain Management (FSCM) goes through series of activities where products are taken from their origin to their final sale to customers (Rejeb et al., 2022).

Big Data refers to extremely large datasets that are too massive and often characterized by "3 V's" Volume, Velocity and Variety (Tao et al., 2015). Big data analysis can give insights, identify trends and make informed decision in Food Supply Chain

Problem Statement

Critical Role of Food Supply Chain Management in global economy; scalability issue

Issues with inefficiencies, in forecasting and logistics often lead to massive food wastage

Limited adoption and outdated practices

Research Questions

RQ1: What are Big Data applications, technologies and strategies currently available for improving supply chain management?

RQ2: How can Big Data technologies and strategies be applied to different stages of the supply chain?

Literature Review Overview

Focuses on Sources of Big Data

Internet of Things, Blockchain, Artificial Intelligence to highlight potential for improving efficiency, traceability and sustainability in supply chain

Inclusion and Exclusion Criteria: English, Online, 2015-2024, Papers/Articles/Journals (324 Selected – 310 Retained)

Keywords: "Big Data", "Food Supply Chain", "Food Supply Chain Management", "Food Logistics", "Data Analytics"

(Kitchenham and Charters, 2015)

Research Methodology

Systematic Literature Approach

Selection Criteria and databases: Scopus, Web of Science, Google Scholar

Analysis Method: Thematic, Content, Bibliometrix

Inclusion/Exclusion Applied (Protopop, 2016)

Bibliometric Analysis

(Aria and Cuccurullo, 2017)

the data from different bibliographic databases (for a complete list, see the correlated section).

Starting from the unload of the data, it is

possible to perform the analysis, also with proper and dynamic graphs.

Thematic Map

- Visual representation of key research themes in FSCM
- Shows connections between technologies and supply chain stages
- Highlights major area of focus

Word Cloud

Visual representation of the most frequently occurring terms in the literature

Highlight key topics such as Big Data, Supply Chain, Food Supply, Food Safety

Cumulative Occurrence

- Tracks the frequency of key themes over time
- The graph Shows "Big Data"
 leads with 152 occurrences,
 while "supply chain" follows
 with 112.

Co-occurrence Network

- Illustrates the relationship between frequently paired keywords in the literature
- The visualization underscore the strong connection between "Bid Data" and "Supply Chain" and "Food Supply" reflecting their crucial roles in modern business strategies and operational efficiency across various industries.

Trend Topic Analysis

Analyze the evolution of key topics in FSCM over time

Identifies emerging trends and shifts in research focus towards advanced technologies

Annual Scientific Production

- Displays the number of
 research publications per year
- Shows the growth in scientific interest and research output in FSCM

Tree Map

- Visual representation of the distribution of research topics
- Highlights the prominence of key areas like Big Data and Food Supply chain followed by IoT, Blockchain and AI in FSCM.

Research Question 1

What are the current Big Data application, technologies in Food Supply Chain Management (FSCM)?

Key findings

- Internet of Things
- Blockchain in Food Supply Chain
- Artificial Intelligence
- Smart Agriculture

Internet Things (Lezoche et al., 2020)

Provides real time monitoring and data collection; Walmart

Enhanced traceability and decision making; IBM Food Trust

Integration with Blockchain; Te-Food

Quality Management; Danone

Blockchain in FSC

Increases transparency and security in FSCM (Rogerson and Parry, 2020)

Tracks food origin, quality, and transactions

Benefits for consumers, suppliers and regulatory compliance

Artificial Intelligence

Enhances Predictive analytics for demand forecasting and inventory management

Automates decision making processes to optimize supply chain operations

Al addresses \$750 billion in annual food waste by improving forecasts and enhancing traceability, ensuring food safety and sustainability (Misra et al., 2020)

Smart Agriculture

Collaboration is Key: Fosters partnerships among farmers, tech suppliers, and stakeholders (Senturk et al., 2023)

Big Data at the Core: : IoT devices and smart sensors gather vast amounts of data (Kumar and Dwivedi, 2023)

Seamless Integration: Big Data enhances traceability and transparency (Senturk et al., 2023)

Research Question 2

How can Big Data technologies be applied across different stages of the food supply chain?

Using Big Data in the Agriculture Supply Chain

Using Big Data to Increase the Efficiency of the Food Supply Chain

Using Big Data to the Food Supply Chain to manage food quality

Utilizing Big Data to reduce food losses throughout the Food Supply Chain

Utilizing Big Data Applications in Urban Food Supply Chain

Use of Big Data in Agriculture Supply Chain

Enhances through Precision Agriculture and Smart Farming techniques

Improve agriculture resource management with IoT sensors and Big data analytics – 15% Improve in Crop Yields (Coble et al., 2018)

Reduces waste and environmental impact by optimizing inputs and monitoring crop health

Increase efficiency of Food Supply Chain

by 10-15% (Ahmadzadeh, 2023)

Leverage	Leverage Big Data for better demand forecasting and streamlined distribution
Implement	Implement IoT for real time monitoring and traceability
Use	Use AI and Machine Learning to optimize logistics and reduce waste

The Food Supply Chain

Manage Food Quality

01

Implement IoT sensors for real time monitoring of storage and transport conditions

(Donaghy et al., 2021)

02

Use Blockchain for traceability and verification of food origin and handling

(Tejero et al., 2019)

03

Apply AI for quality control and early detection of defects or contamination

(Antonucci et al., 2019)

Reduce Food Losses

Food loss is a critical issue with a direct impact on global sustainability

Estimated that 46% to 65% of food waste happens at the consumer level, but significant losses also occur during production and distribution (Annosi et al., 2021)

Due to the overproduction of food that does not align with market demand

Urban Food Supply Chain

(Mantravadi, 2023)

The Food Supply Chain

Focus on localized sourcing and urban farming to reduce transportation distances

Use smart logistics and distribution networks to meet high urban demand

Enhance food access and reduce waste through efficient inventory and delivery systems

Urgency of Research

(Guangjie et al., 2023)

Immediate need for digital transformation in FSCM

Global Pressures: climate change, population growth

600 illnesses and 42,000 deaths each year due to unsafe food

Unsafe food cause 200+ illnesses from diarrhea to Cancer

Recommendation

- Pandemic has undoubtedly brought new era on a global scale in the operation of Food Supply Chain
- Encourage Investment by Small and Mid-sized companies, invest in small tools like Tableau, Power BI or around \$5000 a month
- Return on Investment is Significant.
- We have practical outcomes: Australian company reduced food wastage by 30%
- Be more efficient and sustainable

Conclusions

Recap of key findings and significance

Transformative potential to solve critical challenges

Call for collaborative efforts among stakeholders

Implications for Practice

(Mantravadi, 2023)

Practical implications for FSCM practitioners

How businesses can implement Big Data Technologies

Enhancing food supply chain performance and sustainability

Future Research

Explore Newer Technologies: Neural Networks, AI, Cloud Computing

Focus On Cost Effective Solutions For SMEs

Need For Globally Representative Studies

Limitations

Geographical and methodological limitations

Need for broader, more diverse studies

Suggestions for future studies

Certificate

PANEL ON RESEARCH ETHICS

TCPS 2: CORE 2022

Navigating the ethics of human research

Certificate of Completion

This document certifies that

Anima Pokharel

successfully completed the Course on Research Ethics based on the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans (TCPS 2: CORE 2022)

Certificate # 0001314503

14 July, 2024

Publication

My research paper "Comprehensive Review: Enhancing Food Supply Chain Management through Big Data Technologies and Strategies" has been fully prepared and is now ready for publication.

It is currently in the review stage. The only remaining task is the formatting of references.

The paper is expected to be published in the Journal of Open Innovation: Technology, Market, and Complexity.

- Abideen, A. Z., Sundram, V. P. K., Pyeman, J., Othman, A. K., and Sorooshian, S. (2021). Food Supply Chain transformation through technology and future research directions—a systematic review. *Logistics*, *5*(4), 83. https://doi.org/10.3390/logistics5040083
- Ahmadzadeh, S., Ajmal, T., Ramanathan, R., & Duan, Y. (2023). A comprehensive review on food waste reduction based on IoT and big data technologies. Sustainability, 15(4), 3482.
 https://doi.org/10.3390/su15043482
- Ahearn, M. C., Armbruster, W., and Young, R. (2016). Big Data's potential to improve Food Supply Chain environmental sustainability and food safety. *International Food and Agribusiness Management Review*, 19, 155-171. https://ageconsearch.umn.edu/record/240704/files/820150126.pdf

- Ata, L. A. P. D. Z., and Shakhbazov, S. M. THE BIG DATA INTEGRATION INTO SCM.
 https://doi.org/10.13140/RG.2.2.19360.02564
- Azevedo, S. G., Pimentel, C. M., Alves, A. C., and Matias, J. C. (2021). Support of advanced technologies in supply chain processes and sustainability impact. *Applied Sciences*, 11(7), 3026.
 https://doi.org/10.3390/app11073026
- Babai, M., Syntetos, A., Dalley, Y., Nikolopoulos, K., 2009. Dynamic re-order point inventory control with lead-time uncertainty: analysis and empirical investigation. *International Journal of Production Research*, 47(9), 2461-2483. https://doi.org/10.1080/00207540701666824

- Chakraborty, D., Rana, N. P., Khorana, S., Singu, H. B., and Luthra, S. (2023). Big Data in food: Systematic literature review and future directions. *Journal of Computer Information Systems*, 63(5), 1243-1263. https://doi.org/10.1080/08874417.2022.2132428
- Chaudhary, A., Gustafson, D., and Mathys, A. (2018). Multi-indicator sustainability assessment of global food systems. *Nature communications*, 9(1), 848. https://doi.org/10.1038/s41467-018-03308-7
- Chaudhuri, A., Dukovska-Popovska, I., Subramanian, N., Chan, H. K., and Bai, R. (2018). Decision-making in cold chain logistics using data analytics: a literature review. *The International Journal of Logistics* Management, 29(3), 839-861. https://doi.org/10.1108/IJLM-03-2017-0059

- Govindan, K., & Hasanagic, M. (2018). A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective. International Journal of Production Research, 56(1-2), 278-311. https://doi.org/10.1080/00207543.2017.1402141
- Han, H., Xu, H., & Chen, H. (2018). Social commerce: A systematic review and data synthesis. *Electronic Commerce Research and Applications*, 30, 38-50. https://doi.org/10.1016/j.elerap.2018.05.005
- Hasnan, N. Z. N., & Yusoff, Y. M. (2018, November). Short review: Application areas of industry 4.0 technologies in food processing sector. In 2018 IEEE student conference on research and development (pp. 1-6). IEEE. https://doi.org/10.1109/scored.2018.8711184
- Hill, D. S. (2002). Stages in Food Production. Pests of Stored Foodstuffs and Their Control, 11-18.
 https://books.google.ca/books?hl=en&lr=&id=s_6oopm-E4AC&oi=fnd&pg=PP9&dq=Hill,+D.+S.+(2002)

- Johnson, J. C. (1998). Research design and research strategies. Handbook of methods in cultural anthropology, 1, 131-171.
 https://doi.org/10.1111/an.2001.42.3.22
- Kamble, S. S., Gunasekaran, A., and Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. *International Journal of Production Economics*, 219, 179-194. https://doi.org/10.1016/j.ijpe.2019.05.022
- Kamioka, T., Luo, X., and Tapanainen, T. (2016, June). An empirical investigation of data governance: the role of accountabilities. In *Pacific-Asian Conference on Information Systems (PACIS)*. https://orbi.uliege.be/handle/2268/207646
- Kittichotsatsawat, Y., Jangkrajarng, V., and Tippayawong, K. Y. (2021). Enhancing coffee supply chain towards sustainable growth with Big Data and modern agricultural technologies. *Sustainability*, *13*(8), 4593. https://doi.org/10.3390/su13084593
- Knechtges, P. L. (2011). Food Safety: Theory and Practice: Theory and Practice. Jones and Bartlett Publishers.
 - https://books.google.ca/books?hl=en&lr=&id=CzkmOO0CPaUC&oi=fnd&pg=PR1&dq=Knechtges,+P.+L.+(2011)

- Mckinsey & Co., 2016, How big data will revolutionize the global food chain, 2016. Website https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/how-big-data-will-revolutionize-the-global-food-chain
- Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., and Martynenko, A. (2020). IoT, Big Data, and artificial intelligence in agriculture and food industry. *IEEE Internet of things Journal*, 9(9), 6305-6324. https://doi.org/10.1109/JIOT.2020.2998584
- Navickas, V., & Gruzauskas, V. (2016). Big data concept in the food supply chain: Small markets case. Analele stiintifice ale Universitatii

 "Al. I. Cuza" din Iasi. Stiinte economice/Scientific Annals of the "Al. I. Cuza". https://doi.org/10.1515/saeb-2016-0102
- Ojo, O. O., Shah, S., Coutroubis, A., Jiménez, M. T., and Ocana, Y. M. (2018, November). Potential impact of industry 4.0 in sustainable
 Food Supply Chain environment. In 2018 IEEE International Conference on Technology Management, Operations and Decisions
 (ICTMOD) (pp. 172-177). IEEE. https://doi.org/10.1109/ITMC.2018.8691223

- Rejeb, A., Keogh, J. G., and Rejeb, K. (2022). Big Data in the Food Supply Chain: a literature review. *Journal of Data, Information and Management*, 4(1), 33-47. https://doi.org/10.1007/s42488-021-00064-0
- Rejeb, A., Rejeb, K., & Zailani, S. (2021). Big data for sustainable agri-food supply chains: a review and future research perspectives. *Journal of Data, Information and Management*, 3, 167-182.
 https://doi.org/10.1007/s42488-021-00045-3
- Rizou, M., Galanakis, I. M., Aldawoud, T. M., & Galanakis, C. M. (2020). Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends in food science & technology, 102, 293-299.
 https://doi.org/10.1016/j.tifs.2020.06.008

- Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of business research, 70, 356-365.
 https://doi.org/10.1016/j.jbusres.2016.08.009
- Wang, G., Gunasekaran, A., Ngai, E. W., and Papadopoulos, T. (2016). Big Data analytics in logistics and supply chain management: Certain investigations for research and applications. *International journal of production economics*, 176, 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014
- Zhao, Z., and Cheng, Y. (2022). Two-stage decision model of fresh agricultural products supply chain based on option contract. *IEEE Access*, 10, 119777-119795. https://doi.org/10.1109/ACCESS.2022.3221974
- Zhong, R., Xu, X., and Wang, L. (2017). Food Supply Chain Management: systems, implementations, and future research. *Industrial management and data systems*, 117(9), 2085-2114. https://doi.org/10.1108/IMDS-09-2016-0391

